
1

2

4

Frazetta’s skies – amazing shapes and colors that really help
make the image. We want some of this..

5

Heavy metal album cover art. Even more brutal, exaggerated
shapes and colors in the skies set the scene. Of course we
want some of that.

6

Endless stream of absurdly awesome concepts… all of them
featuring some sort of custom fx, skies, or whatnot. We’re
starting to get a little nervous..

7

And working at Double Fine, we knew we’d get a lot of
unexpected requests that we were not quite prepared to deliver
on.. so we knew we had to set ourselves up to be flexible and
able to experiment.

8

9

Skies and climates.

10

Particle lighting, rendering and simulation.

11

Ink.

12

But first, quick overview of FX creation process. Say we need
to create zeppelin explosion crazyness. Where do we start?

13

Events are interesting as they acts as liaison between client and
underlying code, and are the interface between engine and vfx
artists. This is your chance to make a really good interface that
makes sense...

FWIW, often times custom behavior (special attachments,
moving effects in a custom way/timing with animations, emitter
scaling, setting effect targets) are often implemented client-
side. This required much less overall FX system work (and
overall work) and was more understandable than a massively
complex FX system that was able to handle everything out of
the box with no programmer intervention. And given a fairly
easy to use API, not at all a burden on the those writing the
client code.

14

17

We did know we had a long list of elements that would require
some sort of lighting, but we weren’t sure if all could be solved
with the same solution… much of this did evolve over time.
Likewise, it wasn’t evident (until we started experimenting) that
lighting things would be such a time saver.

18

No.

19

Lighting = Lighting Math (Normal) + “Artistic terms”

20

The naive implementation is to simply slap some normals on
your billboard and call your standard, full on mesh lighting
function.

This has got the right color (sort of), but it doesn't look like it
has volume.. and it's slow to render.

21

Digging around through various papers and experimenting
turned up some more interesting normal generation methods.
 We stuck with this one for a long time (facing ratio 45 deg
offset). It made a big difference, but still doesn't give us the
dramatic lighting that we want. It also showed too much
variation when the camera moved.

22

So, let's hack things up. We want a LOT of lighting variation.
 In fact, we want the MOST lighting variation we can have. So
push those normals all the way out - to each vert of the quad.
You’re basically approximating a sphere. It’s also incredibly
cheap, and changes less than facing ratio normals when the
camera moves.

It’s worth noting we had a few other normal generation
methods, including generating the normals based off the
velocity of the particle. Most of these are specific to certain
classes of visuals, but are not used nearl as much as the
general techniques.

23

Ambient sky component, which uses a “RSA” light – essentially
an artist authored color ramp. See “Radially-
symmetric reflection maps” by J. Stone from the Sketches
section of SIGGRAPH 2009.

24

Directional component from the sun. May also use a RSA light,
or some simple approximation of such.

25

“Top down mix” component – color authored by the artists per
lighting environment.

26

Lighting component breakdown, using center-to-vert normals.

We allow the particle system to provide independent weights to
combine each of these components. We also allow custom
control of how much each particle gets fogged, as because our
particles are so far away, we're often fighting against our
fogging values to get the drama in the lighting that we want.
From these control, we can get lighting that feels dramatic,
responds to time of day changes well, and total gpu cost is
within our limits.

We worked on many revisions of the lighting code – cleaning up
after ourselves was a huge benefit. As much of the time the
new lighting code was a generalization or improvement on a
prior method, we could often automate the conversion from the
old code’s parameters to the new. A python script that can
parse your particle systems, perform changes, and write them
back out has come in handy time and time again. The ability to
batch update systems is one of the major reasons we are not
stuck with a backlog of little-used, semi-broken features that
would make developing new ones even more difficult.

27

28

So dropping in normal mapping and a basic, directional specular
highlight into this does work, but it's slow. And this is such an
effective way of describing wet surfaces, that we really want to
be able to use it everwhere. So let's sacrifice accuracy for
performance – and who really needs accurate details for fast
moving fx? We just want a fast shimmery sparkle in most cases
to make it sell a wet look.

So we just came up with simplified logic to perturb a normal
into a high frequency “sparkle” cubemap/texture, and this gave
the basic look we desired. You can essentially start with normal
mapping, and simply remove everything that would make it
traditionally “correct”, and you’ll have something that is much
cheaper and still sort-of works. Adding in the same normal
warping we perform for the diffuse lighting also helps make it
more interesting, and made it less camera dependent (it’s quite
distracting when the sparkles are very clearly moving with the
camera instead of the particles).

29

Sky,Sky,
Weather,Weather,
EnvironmentEnvironment

Like so many aspects of this game, the Brütal Legend climate is
one of extremes:

* Dynamic time of day

* Dynamic weather

* Regional variation

* World state variation

* Striking sunrise, sunset moments

* Epic constellations

* Aurora borealis

* Skull moons

* Vortices

* Lee Petty, our art director, often suggested a rain of flaming
frogs. I'm pretty sure he was serious.

Time to take our ability to create lit particles, and discuss how
we developed the styled sky and environment rendering.

31

Concepts like these provide a good summary of our initial goal.
Frazetta-like colors and patterns creating the sky, all seamlessly
changing.

32

Summary is that the tech was really getting in the way here,
especially in terms of artist time and the how predictably they
could create images from these somewhat black-box systems.

What we really needed was a madman.. with no respect for the
rules… or gpu costs…

33

Only when we were too fed up with the old approaches did we
forget all the obvious reasons particles wouldn’t work.

But equally evident it would after we gave it a try and hashed
out some of the problems!

We also ended up adding a few extra emitters and other
parameters particularly for the sky particles, but these were
minor.

Many of the edge cases were handed by using existing features
(sorting forcing/ordering, etc)

(Sky specific things included emitter that spawns particles at
configurable shell with furthest point at far plane, probably the
most useful to have right away)

34

Only when we were too fed up with the old approaches did we
forget all the obvious reasons particles wouldn’t work.

But equally evident it would after we gave it a try and hashed
out some of the problems!

We also ended up adding a few extra emitters and other
parameters particularly for the sky particles, but these were
minor.

Many of the edge cases were handed by using existing features
(sorting forcing/ordering, etc)

(Sky specific things included emitter that spawns particles at
configurable shell with furthest point at far plane, probably the
most useful to have right away)

35

36

From a sequence during the player’s first introduction to the
world.

37

Start with some particle events that add stars and clouds.

38

Add some random particle events for lighting, bright flashes
using point light events.

39

Several layers of particle events to create the crazytime moon.

40

And add some rigid body events that themselves have effects to
leave trails.

41

A more painterly sky that needed to have specific elements
present.

42

Particle events for stars.

43

Layered particle events to add a background glow and moon.
These are set to always draw behind all the other particles
besides the stars. The glow looks pretty silly for now..

44

Particle events for clouds, start covering up the glow particles to
give the clouds a backlit look.

45

The glow finally looks less silly, and gives a nice looking backlit
look to the clouds.

46

47

Sometimes a few layers of lit cloud particles just look great.

48

This was evident even when looking at concepts/reference art…
and here we are.

And it’s also time to start looking hard at the rest of the giant
list of requirements we have for skys/climates.

49

Mood paintings make it more evident that the sky plays a large
part, but there is much more than just the backdrop going on.

Color palette, lighting, fog, etc all play a role.

50

A pretty big pile of parameters that can modify various rendering
parameters all throughout the game. The ability to modify so many
things was some time in coming (and reaches throughout our
material system/renderer, etc) but was easy to add artist controls to
once the underlying code was in place.

Organizing it into various sections (Lighting, Fogging, Sky,
Environment FX, Post, etc) helps keep it more maintainable.

Some of the many weather features that artists could tune include
All lighting functions such as sun & sky color, intensity and texture;
Lit Sky Particles.
Precipitation (camera based effects). This allowed us to add more
human scale effects around the player, weather it be rain, dust, ash,
or swirling blood mist.
Vertical Fog. Given the scale of our game, vertical fog was a
necessary component to create depth without entirely fogging out he
background.
Post effects controls. We had a rich suite of post effects for
developing the mood of any given time of day including Color correction,
DOF Blur, Contrast and Saturation adjustment.

Our weather files also had hooks into all of the standard game
material parameters, so we could more directly affect any objects or
characters in the environment. For example, if we wanted to help give
the illusion of wetness in a rainy weather, we could increase the rim
lighting and environment mapping intensity of all of the objects in
that weather.

51

It’s easier to illustrate what all this does by detailing the
progression of an image from neutral settings to the
environment’s natural settings.

Note all these are with the time of day fixed and a single
weather variation selected for all images.

52

Neutral, white light. Not much contrast between sun and sky.

53

Adding a dramatic sky behind all the trees.

54

Changing the sun and sky lighting textures, tuning rim lighting
and environment mapping. Larger contrast between sky and
sun lighting helps to show this is a sunrise moment. Note the
sky also responds to the lighting change.

55

Fogging and ambient FX centered around the player help add
depth and mood.

56

Post processing settings, like color correction and bloom, help
glue the image together.

57

Being able to craft these specific moments is great, but a
“Living Brething Heavy-Metal World” isn’t just a collection of
moments, but is more defined by the transition between all
those moments.

Note this does rely on your lighting system being amenable to
making tons of modifications constantly without any popping
(and in an inexpensive manner), etc… But that’s another talk!

58

Several authored snapshots for the jungle climate, during a
clear day. Note that ie dawn on a clear may transition to
sunrise on a cloudy/rainy day.

One of the many benefit from authoring using Snapshots is
being sure to be able to precisely author specific moments.
Although you have the freedom to add interpolation code
specific to each property, artists will often add additional
snapshots to smooth out unpleasant transitions. The snapshots
shown above are certainly not uniformly spaced in time.

59

Once the climates to blend are picked, the blending is very
much like an animation blend stack, where climates are pushed
on/popped off, have specific blending weight (calculated
differently based on how the climate was pushed) and can blend
properties they set. Each property can have custom blending
(ie, HSV color blends, blending textures for
lighting/cubemaps/etc).

60

To pick the climates, the artists are actually authoring is a
disguised a graph of all the possible climate settings, along with
the edges that define the valid transitions. Obviously this
includes Dawn to Sunrise, but also includes Dawn to every
variation of weather at dawn, from all those variations to all the
other Dawn variations in the neighboring region of the map, etc.
 But they don’t need to deal with the details of authoring a
multidimensional spline that would blend between all those
states, at worst they need to add an additional climate in the
right spot to smooth out blending.

The engine then picks which states to transition between based
on times/position/etc, factoring in any authored random
probabilities of all the climate variations at a particular
time/weather setting, and pushes them onto the stack. The
climate stack may also be modified explicitly by
code/script/cutscenes/etc directly.

61

The number of possible combinations is very large.

62

The number of possible combinations is very large… And gets
very hard to visualize. A great example of why we author it the
way we do.

63

All this in motion does it more justice.

64

Drew is only happy when he increases the particle count or
turns on more features.

66

The most interesting bits are those we added to try to hit
certain fx concepts, but ended up being much more generally
useful than we imagined.

(Image: Simulated production of a Higgs boson in the ATLAS
detector. 2008, Courtesy of CERN.)

67

Which would you prefer, a single scalar value to control a
feature, or a spline so you can control the influence of the
feature over the lifetime of the particle. We know what are
artists prefer time and time again: the spline.

68

Investing in fast curve approximation and evaluation was key.
Makes every single simulation feature immensely more useful.
Once you have them, then most of your emitter, simulation and
other parameters benefit greatly from ability to modify over the
particle’s or overall effect’s lifetime.

For us, we least squares fit your polynomials to the spline
authored by the artist, even brute force testing for the best
locations to place the knots works interactively. Evaluating at
runtime can be made quite cheap, most of your curves can
share the same coefficients.

Dotted line in the picture is the fit curve. Annotated the image
with the curve segments highlighted above. Yes, it is a little bit
off – but it honestly doesn’t matter. Show the fit curve and
you’re set.

69

Adding an additional curve, which is the magnitude of the
variance allowed from the main curve, is a great way to add
per-particle variation in your simulation. A flat curve with high
variance can simply add per-particle random values for your
simulation or shader (ie, a curve at 0.5 with variance of
magnitude 0.5 gives per-particle random numbers in the range
of [0,1]).

We save some memory by storing the variance at lower
precision than the main curve.

70

We’d have struggled to get these sorts of FX without adding any
additional simulation code. It was just our hope that we could
add things that wouldn’t only only speak to these sorts of
behaviors, but be more generally useful.

71

Goals – simply orienting velocity or warping position towards a
goal position. Interesting bits are how you control the strengths
over time (both positive and negative strengths are useful),
how you determine what the goal position should be, and what
you do once the particle gets there. Aging particles when they
are in a radius is a really simple and efficient way to change the
particle’s behavior once they are close to the goal.

72

This process is of course by no means unique to fx, in all facets
of video games the risk of implementing a feature is much less
if you KNOW it's going to be awesome and what the fallout from
it could be. Yet another reason why encouraging this type of
low impact experimentation can yield goodness.

Curl noise for procedural fluid flow, R. Bridson, J. Hourihan, and
M. Nordenstam, Proc. ACM SIGGRAPH 2007.

73

Example video of type of motion you can achieve. So many
variations can be given by altering the resolution (tile rate) of
the noise field, how it evolves over time, how much particle is
affected by the field, etc.

A giant plume of smoke rising into the sky would generally use
a low tile rate and low evolution speed.

Fast moving leaves in a storm would have a medium tile rate
with a faster evolution speed.

Sparks rising from a hot, turbulent fire would have high tile and
evolution speed (coupled with a lifting force).

74

75

Very useful when you have a system attached to a moving
object, but don’t want to create additional particles, or want to
make them feel like they are slowing getting caught in the wind
and being accellerated. Almost all all dust/fire/etc systems
have this enabled, unless they are static.

Driving it negative helps the system be pushed away from
object when it is moving. Ie, can help fire feel more “vortexy”
and hot.

76

The general idea is that we make it easy for quick iteration and
experimentation, but essentially limit how much can go on at
once by only providing a small set of free variables to use when
prototyping new features. Once the limit of these curves,
shader inputs, etc are used, to add additional features some
must be either promoted to officially supported, or discarded.

We try to make the promotion easy (scripts to rename
parameters, organized shader code, etc), but be sure to discard
them if they don’t seem like they’ll would work well with
others/the end effect is possible to achieve through other
means.

Patience and some diligence is needed, but we’ve found doing
things in this way truly helps keep things organized and lets you
be both flexible and able to experiment, while keeping the
number of un-optimized/not fully supported features to a
minimum.

79

Using a curve to determine which frame to use from your
filmstrip makes animated textures much more useful than a
simple ramp.

80

An aside – we used to spend a good amount of time building
textures from AfterFX/etc output frames. As our resource
system has the ability to register any sort of file extension to be
converted into a resource, we added a way for “.filmstrip” files
(containing a list of texture names and final output texture
parameters) to be converted into an atlas automatically without
needing to do it by hand. Few hours of programming time
saved tons of time in the long run.

81

Radial and directional blurs sample along a direction based on
uvs or other parameters. Distortion adds based on additional
texture.

In most cases, additional curves are used to control strength
over time, width of blur, etc.

83

Super cheap, removes need to add more particles, often
removes need to enable z-feathering/soft particles.

Just beware that large values will subvert any cpu-side particle
size culling that would normally prevent massive particles from
eating too much fill.

84

This type of workflow forces you to periodically examine and be
sure to optimize and well integrate your features with the
others, while keeping it easy to experiment and freely play with
new features (without needing to modify the “main” particle
shader).

At times, we’d even choose not to integrate a cool feature since
it would be too difficult to integrate with others, or we found it
could be equally well emulated with a combination of previously
exposed parameters. Not having this excess of bells and
whistles helps vfx artists work quickly by reducing the overall
complexity of the systems they need to work with.

It’s worth saying that the few features we didn’t roll in like this
(due to time constraints) are by far the hardest rendering
features to use!

85

A useful feature in its own right, but mostly interesting as an
example of the type of optimizations you can get by officially
supporting a feature once it is useful! Most of the computation
moved onto the cpu in this case.

86

Building up a library of various rendering tricks really allowed us
to tackle one of the more difficult fx challenges for BL.

88

Ink was tough, we’d made several attempts and never really
had it stick – and we were unable to compromise due to the
importance to BL as a whole.

We knew the basic elements we needed to tackle, try
approaching each independently, using tools we’ve developed
up until now. Keep mind on places we’d fallen in prior
approaches.

90

Many of the concepts for ink as a weapon showcase the ink
emerging, forming a particular shape, and then
falling/dissolving. All the while the edges should remain
“drippy/dissolvey”.

At idle, the ink should feel ready to move at any moment, and
be forming interesting, non repeating shapes and patterns.

The concepts were purposefully not very detailed – since we
had a good idea of how to describe the ink, but not sure how to
exactly visualize it, we didn’t request concept art that might be
terrifically difficult to hit but rather worked to develop
something that had all the qualities we knew ink would need.

91

Start with fairly solid particle simulation feature set, go after
basic motion first.

92

Last part is how to make sure that geo and particles mix – and
it’s easy: render ink-shape geometry to the ink buffer as well.

Additional particles emitted from surface to leave
droplets/ribbons behind.

93

94

What we’re really authoring here is a potential field, which we
then threshold to extract various shapes from. Having layers of
particles all overlapping, where shapes are formed via the
summation of several particles, truly gives a fluid/surface-
tension like feel to the final result.

95

96

The overlapping layers of noisy textures gives interesting
shapes in the final image, and in motion these shapes merge
and detach as the underlying textures interfere with each
other’s texture.

UV displacement on the underlying textures also works really
well! More later.

97

Various thresholding levels.

98

Final image is a composited version of two thresholds with
different strengths for each, but flat influence across the body.

Different colors can be given to each layer to give different
looks (or gradients across the layer body), but flat works best
for ink.

99

UV displacement – can really push it, and since you don’t
directly see the results, it just adds lots of interesting noise in
the final result.

This way we have inter-particle fluid-like interactions from the
potential field, and intra-particle fluid like behavior from the uv
disp.

100

Lots of additional elements end up contributing to the final look
(some of which we have already talked about). It’s quite nice
that all the techniques interact predictably.

101

Acknowledgements

103

Questions? Questions?

Pete DemoreuillePete Demoreuille
pbd@pod6.orgpbd@pod6.org

Drew SkillmanDrew Skillman
drew@drewskillman.comdrew@drewskillman.com

104

